2,138 research outputs found

    Maintenance strategy optimisation for infrastructure assets through cost modelling

    Get PDF
    In infrastructure asset management, maintenance strategies in terms of cost modelling is normally adopted to achieve two broad strategic objectives: to ensure that sufficient funding is available to maintain the portfolio of assets; and to ensure that a minimum cost is achieved while maintaining safety. The data and information required for carrying out cost modelling are often not sufficient in quantity and quality. Even if the data is available, the uncertainty associated with the data and the assessment of the assets’ condition remain a challenge to be dealt with. We report in this paper that cost modelling can be carried out at the initial stage instead of delaying it due to data insufficiency. Subjective experts’ knowledge is elicited and utilised together with some information which is gathered only for a small sample of assets. Linear Bayes methods is adopted to combine the sample data with the subjective experts’ knowledge to estimate unknown model parameters of the cost model. We use a case study from the rail industry to demonstrate the methods proposed in this paper. The assets are metal girders on bridges from a rail company. The optimal maintenance strategy is obtained via simulation based on estimated model parameters

    Optimal Sizing and Location of Static and Dynamic Reactive Power Compensation

    Get PDF
    The key of reactive power planning (RPP), or Var planning, is the optimal allocation of reactive power sources considering location and size. Traditionally, the locations for placing new Var sources were either simply estimated or directly assumed. Recent research works have presented some rigorous optimization-based methods in RPP. Different constraints are the key of various optimization models, identified as Optimal Power Flow (OPF) model, Security Constrained OPF (SCOPF) model, and Voltage Stability Constrained OPF model (VSCOPF). First, this work investigates the economic benefits from local reactive power compensation including reduced losses, shifting reactive power flow to real power flow, and increased transfer capability. Then, the benefits in the three categories are applied to Var planning considering different locations and amounts of Var compensation in an enumeration method, but many OPF runs are needed. Then, the voltage stability constrained OPF (VSCOPF) model with two sets of variables is used to achieve an efficient model. The two sets of variables correspond to the “normal operating point (o)” and “collapse point (*)” respectively. Finally, an interpolation approximation method is adopted to simplify the previous VSCOPF model by approximating the TTC function, therefore, eliminating the set of variables and constraints related to the “collapse point”. In addition, interpolation method is compared with the least square method in the literature to show its advantages. It is also interesting to observe that the test results from a seven-bus system show that it is not always economically efficient if Var compensation increases continuously

    Surfactant aggregation in hydrophobic ionic liquid to formulate microemulsions for the enhancement of the solubility of enzymes and their catalytic performance

    Get PDF
    Room temperature ionic liquids (ILs) are molten salts at room temperature or below 100 °C. They are composed of organic cations and inorganic/organic anions. ILs have many advantages such as low volatility, high stability, good miscibility with organic compounds and unique constituents designability. Compared to traditional organic solvents, ILs are usually considered as “green” solvents. The use of ILs as media for enzyme catalysis was tried as early as 2000, and since then, many endeavours have been devoted to the studies. Previous studies indicate that an enzyme usually has catalytic activity in ILs if the enzyme is active in an organic solvent. Also it has been found that the [email protected] performance of enzymes in ILs is correlated with the hydrophilicity/hydrophobicity of ILs. In hydrophobic ILs, such as [Bmim][PF6] and [Bmim][NTf2], enzymes are not soluble, and usually their powders are suspended in ILs. The suspended enzymes exhibit catalytic activity and even good stability, but only small portions are available for catalysis due to their poor dispersion. By contrast, in hydrophilic ILs, enzymes are soluble, but their activity is poor due to the unfavourable interaction between enzymes and ILs. It follows that the major problem for the utilization of ILs as media for enzyme catalysis is how to reconcile the contradiction between the maintenance of the enzyme activity and the solubility of the enzyme in ILs. Reviewing the evolution of the medium engineering for enzyme catalysis, we get a good idea. For hydrophobic ILs (HILs), a good solution to the problem is to create a microenvironment suitable for the dispersion of an enzyme as well as the maintenance of the enzyme activity by dispersing water into HILs; i.e., the so-called microemulsification of HILs with surfactants. The microemulsification results in larger surface area than in the HIL/water two-phase system and makes the reactions of hydrophobic substrates with a hydrophilic enzyme go easily. Moreover, the formed water pool can restrict the change of the conformation of the enzyme. Studies have shown that most enzymes can maintain their catalytic activity and stability in HIL-based microemulsions. In this talk, we make a brief description of the recent progress made in my group in the enzyme catalysis in HIL- based microemulsion. To be relevant to the themes of the Conference, the talk is focused on the aggregation behaviour of different surfactants in HILs as well as the microstructural effect of the formed aggregates on solubilized enzymes. The aggregation of surfactants of different types will be summarized. To circumvent the poor solubility of most ionic surfactants such as NaAOT in HILs, a new strategy has been developed; i.e., the substitution of the inorganic counter ion by its organic counterpart. For example NaAOT, the replacement of the counter ion Na+ by [Bmim]+ not only increases the surface activity of AOT- in water, but also significantly improve its solubility in [Bmim]Tf2N. Also it is found the exchange of the cations helps to formulate a W/HIL microemulsion without any additives. In addition to the construction strategy, we will present detailed studies on the regulation of the microstructure and the consequent water solubilization capacity by salts and alcohols. The catalytic performance of enzymes hosted in HIL-based microemulsions has been characterized. It is found that the formation of the microdroplet of water in HIL facilitates the dispersion of enzymes such as laccase on a molecular level and also greatly reduces the negative effect of the ionic liquid on the enzyme. The catalytic activity of an enzyme hosted in the droplet depends upon the size of the droplets, the interfacial components and charge density. For a given enzyme, an optimal microenvironment could be created via the formulation optimization. All results indicate that HIL-based reverse micelles or microemulsions, which are homogeneous macroscopically but microscopically heterogeneous, are promising media for an enzyme catalyzed reaction

    Dialkylaluminium 2-imidazolylphenolates: Synthesis, characterization and ring-opening polymerization behavior towards lactides

    Get PDF
    The stoichiometric reaction of the 2-imidazolylphenols (L1–L9) with the trialkylaluminium reagents AlR₃ (R = Me, Et and iBu), afforded the corresponding dialkylaluminium 2-imidazolylphenolate complexes [R₂Al(L1–L9)] (C1–C11), which were characterized by ÂčH/ÂčÂłC NMR spectroscopy and by elemental analysis. The molecular structures of the representative complexes C1, C2, C4, C6 and C11 were determined by single-crystal X-Ray diffraction, and revealed a distorted tetrahedral geometry at aluminum. These dialkylaluminium 2-imidazolylphenolates (C1–C11) could efficiently catalyze the ring-opening polymerization of lactides to afford high molecular weight polylactide, both in the presence and absence of BnOH, and as such represent rare examples of the use of bi-dentate ligation at aluminum in such lactide polymerization systems. On the basis of the polymerization results for l-lactide, d-lactide and rac-lactide, the nature of the ligands and the aluminum bound alkyls were found to significantly affect the catalytic activity as well as the properties of the resultant polylactides

    Freedom and Responsibility: Discussion on Transmission Ethics From the Perspective of New Media

    Get PDF
    New media represented by network and mobile phone is gradually changing the life of people. They have greatly satisfied with people’s freedom of information and speech, broken through official information restriction, promoted their own transmission advantages and manifested the power of public discourse of the masses. However, the phenomenon of ethical misconduct is common in the transmission process of new media and freedom and responsibility are malposed due to various reasons. In view of this, how to guarantee transmission freedom and undertake ethical responsibility has become a focus of study on media ethics currently. This paper starts from the current phenomenon of ethical misconduct in new media transmission to explore its reasons and puts forward measures for standardizing new media transmission ethics on this basis in terms of legal construction, media self-discipline and supervision & control

    Zinc 2-((2-(benzoimidazol-2-yl)quinolin-8-ylimino)methyl)phenolates : synthesis, characterization and photoluminescence behavior

    Get PDF
    A series of 2-(2-(1H-benzoimidazol-2-yl)quinolin-8-yliminomethyl)phenol derivatives and their zinc complexes (C1 – C5) were synthesized and fully characterized. The molecular structure of the representative complex C2 was determined by single crystal X-ray diffraction, which revealed that the zinc was five-coordinated with the tetra-dentate ligand and a methanol bound to the metal afford a distorted square-pyramidal geometry. The UV-Vis absorption and fluorescence spectra of the organic compounds and their zinc complexes were measured and investigated in various solvents such as methanol, THF, dichloromethane, and toluene; significant influences by solvents were observed on their luminescent properties; red-shifts for the zinc complexes were clearly observed in comparisons to the free organic compounds

    2-{2,6-Bis[bis(4-fluorophenyl)methyl]-4-chlorophenylimino} -3-aryliminobutylnickel(II) bromide complexes: Synthesis, characterization, and investigation of their catalytic behavior

    Get PDF
    The series of 2-{2,6-bis[di(4-fluorophenyl)methyl]-4-chlorophenylimino}-3- aryliminobutane derivatives (L1-L5) and their nickel(II) dibromide complexes (Ni1-Ni5) were synthesized, and all organic compounds were fully characterized by the Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy and by elemental analysis, while the nickel complexes were characterized by FT-IR spectroscopy, elemental analysis, as well as by single-crystal X-ray diffraction for two representative examples, namely Ni1 and Ni4. A distorted tetrahedral geometry was observed for these four-coordinate nickel complexes. Upon the activation with either Methylaluminoxane or modified methylaluminoxane as co-catalyst, all nickel complex precatalysts showed very high activity toward ethylene polymerization with activities of up to 10 7 g(PE)·mol -1 (Ni)·h -1 , and afforded highly branched polyethylene with a bimodal distribution. © 2014 Elsevier B.V
    • 

    corecore